Exact Travelling Solutions For The Sixth-order Boussinesq Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

Cauchy Problem for the Sixth-order Damped Multidimensional Boussinesq Equation

In this article, we consider the Cauchy problem for sixth-order damped Boussinesq equation in Rn. The well-posedness of global solutions and blow-up of solutions are obtained. The asymptotic behavior of the solution is established by the multiplier method.

متن کامل

Exact travelling wave solutions for the modified Novikov equation ∗

which was discovered in a symmetry classification of nonlocal PDEs with quadratic or cubic nonlinearity. By using the perturbation symmetry approach [7], Novikov found the first few symmetries and a scalar Lax pair for Eq. (1), then proved that it is integrable [9]. Hone and Wang [5] gave a matrix Lax pair for the Novikov equation and found its infinitely many conserved quantities, as well as a...

متن کامل

Travelling wave solutions to Zufiria’s higher-order Boussinesq type equations

Zufiria’s higher-order Boussinesq type equations are studied by transforming them into solvable ordinary differential equations. Various families of their travelling wave solutions are generated, which include periodic wave, solitary wave, periodic-like wave, solitonlike wave, Jacobi elliptic function periodic wave, combined non-degenerative Jacobi elliptic function-like wave, Weierstrass ellip...

متن کامل

Exact Travelling Wave Solutions for a Modified Zakharov–Kuznetsov Equation

The modied Zakharov–Kuznetsov (mZK) equation, ut + uux + uxxx + uxyy = 0, (1) represents an anisotropic two-dimensional generalization of the Korteweg–de Vries equation and can be derived in a magnetized plasma for small amplitude Alfvén waves at a critical angle to the undisturbed magnetic field, and has been studied by many authors because of its importance [1–5]. However, Eq. (1) possesses m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics and Computer Science

سال: 2011

ISSN: 2008-949X

DOI: 10.22436/jmcs.002.02.17